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After introducing general versions of three fundamental quantum pos- 
tulates-the superposition principle, the uncertainty principle, and the com- 
plementarity principle--we discuss the question of whether the three principles 
are sufficiently strong to restrict the general Mackey description of quantum 
systems to the standard Hilbert-space quantum theory. We construct an exam- 
ple which shows that the answer must be negative. We introduce also an 
abstract version of the projection postulate and demonstrate that it could serve 
as the missing physical link between the general Mackey description and the 
standard quantum theory. 

1. I N T R O D U C T I O N  

The superpos i t ion  pr incip le ,  the unce r t a in ty  pr inciple ,  and  the com-  
p l emen ta r i t y  pr inc ip le  fo rm a very  essential  pa r t  of the t r ad i t iona l  quan-  
t um theory.  In  spite  of their  f ounda t i ona l  s tatus in the theory,  on ly  the 
superpos i t ion  pr inc ip le  has been  a p p r e c i a t e d  in the q u a n t u m  logic ap-  
p roach  to ax iomat ic  q u a n t u m  mechanics ,  whereas  the o ther  two pr inc ip les  
have  been,  to a large extent,  neg lec ted  in this approach .  

In  this p a p e r  we are  c o n c e r n e d  with the ques t ion  of  whe ther  the 
s t a n d a r d  Hi lbe r t  space  q u a n t u m  theory  can  be  e rec ted  on  these f u n d a m e n -  
tal  pr inc ip les  only.  M o r e  specif ical ly,  we shall  s tudy  the ques t ion  whe ther  
these pr incip les  ( su i tab ly  fo rmu la t ed )  are  enough  to res t r ic t  the genera l  
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Mackey axiomatics to the standard Hilbert-space quantum theory. With a 
counterexample this question will be answered in the negative. This nega- 
tive result leads us to two alternative definitions of the proper quantum 
mechanical description which are the general Mackey axiomatics supple- 
mented with the three principles and the standard Hilbert-space quantum 
theory. 

Accepting the first of the above two definitions we think that our 
counterexample is a decisive indication that Hilbert space is too rich a 
structure to reflect properly the very ideas of the theory. Really, it is a 
well-known fact that many of the results of the Hilbert-space operator 
theory which are relevant for quantum mechanics can be reached in a 
much more general framework. We recall only the celebrated yon Neu- 
mann-Varadarajan theorem (1968) and the spectral theory of Catlin 
(1968). With this definition, however, we face the problem of developing a 
new representation theory for the resulting abstract quantum theory. We 
do not touch this problem here. 

Accepting the second definition for the proper quantum mechanical 
description, we advocate the view that the above three principles do not 
exhaust the foundations of the theory, but that there exists at least one 
more so-called fundamental principle which is an essential building stone 
of the theory. We are thus led to look for that (those) missing physical 
link(s). An analysis of the relevant literature has revealed that the von 
Neumann projection postulate (in one or another of its disguised forms) is 
one of the most important constituents in any representation theory which 
is intended to solve the problem of deriving the famous Hilbert-space 
axiom of Mackey (Bugajska and Bugajski, 1973b). Thus we guess that the 
projection postulate is a good candidate for such a missing physical link. It 
really turns out that the projection postulate (with a suitable formulation) 
is almost all we need to reach the standard Hilbert-space quantum theory 
from the general Mackey axiomatics. Only to avoid a trivial case, corre- 
sponding to the classical theory, something else is needed. This gap can be 
filled, e.g., with any of the three principles mentioned. In this approach, 
however, the above three fundamental principles have a very modest 
position, namely, to exclude only a trivial case. This is unsatisfactory 
because of the (traditionally) foundational status of the three principles in 
general discussion on the foundations of quantum theory (see, e.g., 
Jammer, 1966, 1974). 

The structure of the paper is the following. We begin with a short 
sketch of the Mackey axiomatics, fixing thus our general set of frames-- 
called the Mackey description. To appreciate our general problem we then 
proceed by formulating the three principles in the Mackey description. 
This is done in sections 3, 4, and 5. In section 6 we then ascertain that our 
formulations of the principles really are of quantal nature, i.e., that each of 
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them excludes the classical description. Moreover, their equal foundational 
status is guaranteed by the logical independence of their formulations. In 
section 7 we finally are in a position to give our counterexample with 
which the negative answer to our main question is provided. Thereafter the 
two alternative definitions of the proper quantum mechanical description 
are formulated. In section 8 we formulate the projection postulate in our 
framework, and show that the Mackey description supplemented with the 
projection postulate is, apart from a trivial case, already the standard 
Hilbert-space quantum theory. We close this paper with a discussion of the 
results reached. 

2. MACKEY DESCRIPTION 

To keep our considerations as general as possible we start with the 
Mackey assumptions (1963), which seem rather unquestioned and applica- 
ble to any probabilistic physical theory. 

Thus we assume that a theoretical description of a physical system is 
based on two sets: O - - t h e  set of all physical quantities (observables) 
concerning the system, and S - - t h e  set of all states (preparation proce- 
dures) of the system. We assume further that there is defined a function 
p : O  x S x B(R)---~[0, 1], where B(R) is the family of all Borel subsets of the 
real line R, and [0,1] is the unit interval. The number p(A,a,X) with 
A ~ O, a E S, X E B(R) is interpreted as the probability that a measurement 
of the quantity A on the system prepared in the state a will yield a result in 
X. This interpretation of the function p requires that for each fixed A in O 
and for each fixed a in S the set function p(A,a,.):B(R)~[O, 1] is a 
probability measure on B(R). 

The Mackey assumptions (Mackey, 1963; see also Maczynski, 1967) 
concerning the properties of (O, S,p) lead to a more fundamental set L (the 
logic of the considered system) of elementary observables (questions) 
which carries a natural structure of an orthomodular o-complete poset. 
Each element A of O can be described as an L-valued measure on 
(R,B(R)), and each state a of S as a probability measure on L. The 
spectrum of A will be denoted by o(,4). The family of L-valued measures 
corresponding to all observables of O is surjective, and the family of 
probability measures on L corresponding to all states of S is order-de- 
termining (full). The original function p can now be expressed as p(A, a, X) 
=aoA(X), where A E O  is understood as an L-valued Measure on 
(R,B(R)), and a E S as a probability measure on L. Thus we see that 
(O, S,p) can be reconstructed from a more fundamental description (L, S), 
where S is a full set of probability measures on L. 
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For the purpose of further considerations we have to assume that 
there is a sufficiently numerous set P of pure states in S. Such an 
assumption does not affect essentially the generality of our considerations. 
This is because the set S may be assumed to be a convex compact subset 
(in the pointwise convergence topology, see, e.g., Fischer and R/ittimann, 
1978) of the family of real functions on L, in which case it possesses 
extremal points (see, e.g., Robertson and Robertson, 1966, p. 138). These 
extremal points can be considered as some idealized (pure) states on L, 
moreover for any a@L, a ~ 0 ,  there exists a pure state, say a, such that 
a(a) = 1. Thus the set P of pure states on L is unital, and hence also full 
(Pool, 1968). 

The pair (L, S), fundamental for our discussion, with the above-stated 
properties, will be called the Mackey description. 

3. T H E  S U P E R P O S I T I O N  PRINCIPLE 

The superposition principle in quantum theory can be formally con- 
sidered in two different ways: either as a requirement of linearity of the 
quantum equations of motion, or as an assumption expressing the linearity 
of the underlying Hilbert space. The first aspect is rather questionable 
because of the growing tendency to introduce nonlinear terms into the 
Schr6dinger equation (see, e.g., Mielnik, 1974; Haag and Barmier, 1978). 
The nonlinear generalizations of quantum mechanics operate on the same 
linear space of ,t' functions as the standard quantum mechanics; neverthe- 
less, the second meaning of the superposition principle becomes less 
fundamental from the physical point of view. Anyway, the linearity of the 
space of 'I t functions is still considered traditionally as one of the most 
basic properties of quantum theory. This point of view, based on the 
matter-wave hypothesis of Louis de Broglie in 1924 and the wave 
mechanics of Erwin Schr6dinger in 1926, is fully exposed in Paul Dirac's 
"Principles" in 1930, where one can find statements like: "each state of a 
dynamical system at a particular time corresponds to a ket vector, the 
correspondence being such that if a state results from the superposition of 
certain other states, its corresponding ket vector is expressible linearly in 
terms of the corresponding ket vectors of the other states, and conversely" 
(Dirac, 1958, p. 16). 

Thus we have to define the notion of superposition, and to formulate 
the superposition principle in the general frame of the Mackey description. 
Observe that in this framework, where the standard one-to-one correspon- 
dence between pure states (one-dimensional subspaces of the Hilbert 
space) and atoms of L (projections with one-dimensional ranges) is not 
assumed, one can consider independently superpositions of pure states in 
P and superpositions of atoms in L. 
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The following definition of the notion of superposition of pure states, 
due to Varadarajan (1968, p. 116), is the most popular one: 

(S) A pure state a is a superposition of pure states a I and a 2 iff 
al(a ) = ct2(a ) = 0 implies a(a) = 0 for every a EL.  

The Varadarajan notion of superposition is restated and considered 
by many authors; see, e.g., Bugajska and Bugajski (1973b), Gudder  (1970), 
Zabey (1975). The definition of superposition recently given by Cantoni 
(1976) can easily be shown to be exactly equivalent to (S). A more specific 
definition has been proposed by Deliyannis (1976), who introduces a 
numerical characterization of a proportion the two pure states are super- 
posed in. To do this he must introduce a new element into the Mackey 
description representing the "coupling" of pure states. Its physical meaning 
is rather hard to explain. On the other hand, axiom (ix)-b of Deliyannis 
shows explicitly that any superposition in his sense is also a superposition 
in the sense of (S). Thus (S) is rather sufficiently general and it expresses 
the very essence of the traditional notion of quantum superposition. 

Observe that if the mentioned correspondence between pure states 
and atoms holds then (S) can be formulated as follows: 

(S') An atom a is a superposition of atoms a I and a 2 iff a < b for every 
b E L  such that b > a 1 and b >a2: 

If L is lattice the condition (S') can be formulated in terms of the 
lattice join: a is a superposition of a 1 and a 2 iff a <alVa 2. In the general 
case where the correspondence between atoms and pure states does not 
necessarily hold (S) and (S') are independent and provide two alternative 
formulations of the notion of superposition. Something like (S') is sug- 
gested by Jauch (Jauch, 1968, p. 106), but he prefers (without a sufficient 
justification) a stronger definition: an atom a is a (quantum) superposition 
of atoms a 1 and a 2 iff a l V a 2 = a l V a = a 2 V a .  Note that any of the 
mentioned definitions provides an abstract counterpart of the linearity 
requirement of Dirac. 

Now we can state the superposition principle requiring simply that for 
any two pure states (or for any two atoms) there is a third one which is 
their superposition. Thus we have the following: 

(SP) For any two pure states there exists a third one which is a 
superposition of them according to (S). 

(SP') For any two atoms there exists a third one which is a superposi- 
tion of them according to (S'). 

Of course, the superposition principle can be valid only for irreducible 
systems, as superselection rules impose serious limitations on the validity 
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of any form of the superposition principle. Note that Varadarajan (1968; 
see also Gudder, 1970; Zabey, 1975) formulates a stronger form of the 
superposition principle based on (S) demanding the lattice of all (S)-closed 
subsets of P to be exactly isomorphic to L. He ascribes to Dirac this point 
of view. Our (SP) was formulated by Pulmannova (1976). 

4. THE UNCERTAINTY PRINCIPLE 

The uncertainty principle originated through the work of Werner 
Heisenberg (1927). His point of departure was a reinterpretation of classi- 
cal concepts, like position, velocity, and energy, in quantum domain by 
reducing the definability of a physical concept to its measurability. Heisen- 
berg ended then with the conclusion that "all the concepts that are used in 
the classical theory for the description of a mechanical system can also be 
defined exactly for atomic processes." "But," he continues, "the experi- 
ments which allow such definitions carry with them an uncertainty if they 
involve the simultaneous determination of two canonically conjugate 
quantities" (Heisenberg, 1927, p. 179). Thus according to Heisenberg a 
consistent application of the concepts of classical physics in the quantum 
domain was secured by posing some limitations on the simultaneous 
measurability of certain physical quantities. These limitations Heisenberg 
expressed in his famous uncertainty relations. 

In spite of some ambiguity in Heisenberg's writings, and the existence 
of at least two different ways of understanding his uncertainty principle, it 
is commonly accepted that the characteristic feature of quantum 
mechanics responsible for the uncertainty principle can be formulated in 
the following way (Lahti, 1979): 

(UP) There exists at least one pair of observables A,B in O and a 
positive number h, such that for any state a E S, for which the variances of 
A and B are well defined, the inequality Var(A, a). Var(B,a)~h holds. 

We will refer to (UP) as to the uncertainty principle. It expresses the 
intuitive idea of Heisenberg as formulated, e.g., in his Chicago Lectures: 
" . . . in  many cases it is impossible to obtain an exact determination of the 
simultaneous values of two variables, but rather that there is a lower limit 
to the accuracy with which they can be known.., this lower limit to the 
accuracy with which certain variables can be known simultaneously may 
be postulated as a law of nature. . ."  (Heisenberg, 1949, p. 3}. 

5. THE COMPLEMENTARITY PRINCIPLE 

The origin of Bohr's notion of complementarity was in his final 
acceptance of the wave--particle duality of light and matter (see Bohr, 
1978a, b). According tO Bohr, the wave-particle duality is so central a 
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phenomenon that it should form a natural basis for any interpretation of 
the quantum theory. Starting from this duality Bohr developed his notion 
of complementarity which was to "denote the relation of mutual exclusion 
characteristic to quantum theory with regard to the application of the 
various classical concepts and ideas" (Bohr, 1978c, p. 19). 

Although complementarity has been discussed for more than 50 years, 
an exact definition of the notion of complementary physical quantities has 
been found quite recently (Lahti, 1980; see also Lahti, 1979 for a discus- 
sion). We assume the following definition, referring the reader to Lahti 
0979): 

(C) Observables A and B are complementary if for any bounded 
Borel sets X and Y such that X A a(A) C_ o(A) and Y A o(B) C a(B), the 
lattice meet A( X)AB(Y)  exists in L and equals the least element of L, O. 

Now we can formulate the complementarity principle: 

(CP) There exist at least two nonconstant complementary observables 
in O. 

Let us note that the property expressed in (C) is an abstract version of 
the Hilbert-space result, according to which the Schr6dinger couple (Q,P) 
possesses the property: Q(X)A P(Y)= 0 for any bounded X and Y in B(R) 
with Q(X) and P(Y) denoting the projections corresponding to X and Y 
via the spectral decompositions of Q and P, respectively. This property of 
Q and P emphasizes the complementary nature of position and momen- 
tum observables in the Bohr sense (Lahti, 1979). 

6. THE QUANTAL NATURE OF THE PRINCIPLES 

From the physical point of view it should be clear that each of the 
above-discussed three principles should in some way reflect the very root 
of the quantum theory: the existence of the universal quantum of action h. 
This means that each of the principles should lead to a quantal theory, i.e., 
to a theory with a typical quantum property. In this chapter we shall 
shortly check that our formulations of the principles really lead to non- 
classical theories. For details we refer the reader to Lahti (1979). 

In Section 3 we gave two formulations for the superposition principle: 
the one referring to the state system S, the other referring to the logic L. It 
is immediately clear that both of these formulations exclude the classical 
mechanical description of any physical system. On the one hand, (SP) 
implies a nonclassical state system S simply because in the classical case 
no pure state can be a superposition of other pure states distinct from it. 
On the other hand, (SP') implies a non-Boolean structure for L. Really, 
assuming that L is Boolean and that a, al, and a s are atoms of L satisfying 
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the superposition principle, one could conclude that a = a A(a l  V a 2 )  ----- (a A 
al)V(aAa2)=O, which is a contradiction. 

The unitalness of the state system S implies, as one can easily show, 
that the observables satisfying the uncertainty principle are unbounded 
and noncompatible. This, again, means that the theory which results after 
restricting the Mackey description with (UP) is nonclassical. It is also of 
interest to note that if the unitalness of the state system S is not assumed 
one can have a Mackey description (L, S) with a Boolean L and with a full 
and convex set S of states on L such that (UP) is satisfied in (L, S) 2. In this 
case the quantal feature of the description is incorporated in the state 
system S only (S cannot contain any unit measures on L, i.e., classical 
pure states), and one can interpret (UP) as deforming the classical theory 
to a quantal theory with modifying the classical notion of state. 

Our formulation of the complementarity principle is also of a quantal 
nature as it leads to the break of the distributive law in L. Really, one can 
show that (CP) implies the following important property for L: there exist 
in L at least two propositions, say a and b, such that their meet aAb exists 
and equals the least element of L, but they are not orthogonal. Moreover, 
we note that nonconstant complementary observables are always noncom- 
patible. 

We conclude that our formulations of the superposition principle, the 
uncertainty principle, and the complementarity principle are of quantal 
nature, each of them being enough to exclude the classical mechanical 
description of the given physical system. 

Finally, we note that our formulations of the three principles are 
logically independent (see Lahti, 1979). This means that they really have 
the same "logical status" on the foundations of quantum theory. Thus it 
appears to be only a matter of taste to elevate one of them to the first 
principle of the theory and to put the other two on a subordinate level. 
However, this tendency is quite strong in the relevant literature. A typical 
example of this attitude in modern texts is the book of Varadarajan, where 
one can read the confession that "the principle of superposition of states is 
the fundamental concept on which the quantum theory of atomic systems 
is to be erected" (Varadarajan, 1968, p. xi). 

7. THE THREE PRINCIPLES AND THE HILBERTIAN 
MODEL OF QUANTUM THEORY 

Now the following question can be posed: Are the three fundamental 
principles of quantum theory strong enough to restrict the general Mackey 

2Stteh a n  example was discovered by S. Bugajski and it is discussed in Lahti (1979). 
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description to the standard Hilbertian quantum mechanics? The answer is 
in the negative, because of the following counterexample. 

Let (L0~,S0~) and (L(/),S (2)) be two Hilbertian Mackey descriptions, 
i.e., L (0 is the lattice of all orthogonal projections on a separable complex 
Hilbert space H (~ whereas S (0 is the set of all probability measures on 
L(0,i = 1,2. Let L be the horizontal sum (Holland, 1970) of L 0) and 
L (2), L = L(I)(~)L (2). One can visualize L as L (1) and L (2) "pasted together" in 
two "points": e(1)~-,e (2), 0(1)~--)0 (2) (where e (0 is the greatest, and 0 (i) the least 
element of L (0, i =  1,2). It is evident that L is an irreducible orthomodular 
complete lattice (for a general proof see Greechie, 1968), and that probabil- 
ity measures on L are in a natural correspondence with pairs (a 0), a(2)), a (0 
E S (0, i = l, 2. The resulting structure (L, S) with S = S (l) • S (2) (the Carte- 
sian product) provides an example of both non-Hilbertian and nonclassical 
Mackey system. The nonclassical character of (L, S) needs no comments. 
Its non-Hilbertian character means that L cannot be represented as the 
lattice of all orthogonal projections on a Hilbert space. 

Observe that the horizontal sum L=L(1)(~L (2) can be canonically 
embedded into the Hilbertian structure (L(l)@L(2),s(l)(~S (2)) correspond- 
ing to the tensor product H(1)@H(2):  a(l~-~a(1)|174 
a (2), (or (1), O~(2))1"'~0~(1)@ O g(2). This embedding, however, is not a lattice homo- 
morphism. Thus, e.g., a 0) | e (2), e (1) ~ a(2) are compatible in L (I) ~ L (2), and 
their lattice meet equals a ~ 1 7 4  (2~, whereas a (1) and a (2) for a ~  
e 0), 0 ~ a (2) ~ e  (2), 0 (2~ are not compatible in L(I)(~)L (2), and their lattice meet 
equals 0. On the other hand, our L(l)(~)L (2) has nothing in common with 
the direct sum of H 0) and H (2~, so its specific structure cannot be inter- 
preted as a result of a superselection rule. 

Let us consider now the three principles in the case of our (L, S). It is 
easy to see that any pure state of S restricted to L (~ defines a pure state, 
say a (0, on L (i) ( i=  1,2), and vice versa: any pair (a( l) ,a  (2)) of pure states 
with a (~) E p0) and a (2) ~p(2) defines a pure state on L. Now (SP) demands 
that for any two pure states on L, say (a (l), a(2)), (fl(~),fl(2)), there exists at 
least one pure state (.yo), 3,(2)) on L such that (a (1), a(2))(a)= (fl~ fl(2))(a)= 
0 implies (yo), 7(2))(a)= 0 for any a in L. It is evident that this implication 
holds for any pair (~,0),7(2)) such that the q-funct ion corresponding to v(i) 
is a normalized superposition of those corresponding to a (0 and fl(o(i= 
1,2), hence the set of such ('r (1), ~(2)) is not empty for any pair of pure states 
on L. 

The mentioned correspondence between atoms and pure states is 
broken in our (L, S). Nevertheless (SP') holds, too. Indeed, the set of atoms 
of L is a set sum of the sets of atoms of L (l) and L (2). Hence we have only 
to check if for any two atoms a 0) in L (1) and a (2) in L (2) there is a third 
atom, say a, in L such that a < a ~  (2). It does exist, of course, because 
a(l)k/a(2)=e in this case. 
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The two other principles are satisfied both in (L(1),S (1)) and in 
(L(/),S (1)) separately, so they hold also for (L,S). Moreover, any two 
observables A(1)EO(1),A(2)EO (2) are complementary in the sense of 
Section 5. 

Thus we see that the Mackey description supplemented by the ab- 
stract form of the superposition principle, the uncertainty principle, and 
the complementarity principle is still far from being the standard quantum 
mechanics. In the presence of this example two alternative definitions of 
the proper quantum mechanical description can be taken into account: 

(QM1) The proper quantum description is the theory resulting from 
the Mackey description after supplementing it by the three mentioned 
principles. 

(QM2) The proper quantum description is provided by the standard 
Hilbert-space quantum mechanics. 

We have demonstrated that the two definitions are not equivalent, 
hence the Hilbert space is too specific to reflect general ideas of the 
quantum theory. Accepting (QM1) we have, however, to develop a new, 
more general representation theory for the resulting form of the Mackey 
description. On the other hand, if we accept (QM2), we must find at least 
one additional fundamental principle to obtain the Hilbertian model of 
general quantum theory. The latter problem will be considered in the next 
section. 

8. THE PROJECTION POSTULATE AND THE STANDARD 
QUANTUM THEORY 

What we want to consider now is essentially the problem of deriving 
the famous seventh axiom of Mackey from basic principles. It was for 
many years the main problem of research on the foundations of quantum 
theories. An analysis of numerous representation theorems for quantum 
logic, intended to provide a solution to this problem, shows that their 
common and important constituent is a more or less disguised form of the 
von Neumann projection postulate (see Bugajska and Bugajski, 1973b). So 
we guess that this postulate serves as a missing fundamental principle 
which makes it possible to restrict the Mackey description to the standard 
Hilbertian quantum theory. It is not quite obvious, however, what form the 
projection postulate should take in the abstract context of the Mackey 
description. Hence our first goal is to formulate this principle outside the 
Hilbert-space operators. 

The projection postulate is not related to numerical results of 
measurements, but rather to the changes of states caused by measurements 
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of some very special type (ideal measurements of the first kind). So we 
must introduce new elements into the Mackey scheme: the set of opera- 
tions, or at least its subset called the set of filters. What we need now is a 
definition of a filter. 

The most fundamental property of filters is that they transform pure 
states into pure states with corresponding decrease of "intensity of the 
incoming beam") To describe this we define a set P as the product: 
P=[0,  1]XP= (~ap, ~[0, 1 ] , a~P)  with all 0a identified and denoted by o~, 
and with (1 a[a ~ P) naturally identical to P. We~ introduce, the "intensity 
functional" e : P---~[0, 1] by e(ha) =~,a  EP. If ~: P--~P is a filter, and a EP, 
then e(qa) is the "transmission coefficient" for the selection process 
described by qs. 

The set Lf of filters will be defined by the following properties: 

(F1) e(~,a) < e(a), 'Va ~P,  ~'0 ELj  r : P--*P, V0 ELy 

(F2) ,/,(Aa) =M/,(a), Va Et ' ,  VAE[0, 1], VeEL!  

(F3) e(epa)=e(a)--~epa=a, VaEP,  VepELy 

- ' V ~ L f ,  a ~ P ,  where a' is the "normalized" state (F4) 4 a ' -  a ,  
obtained after selecting the beam corresponding to a by means of the 
filtering device 0, a' = (e(e~a))- lCpa. 

(F5) for every a E P  there exists one and only one filter, denoted by 
~ ,  such that ,l,~fl=fl-->fl=a,'qfl EP 

(F6) e(qa) = e(ep~,a), Vd~ ~ If,  Va E P, where a' is defined in (F4). 

The first property has been commented on briefly above. The second 
one means, intuitively speaking, that the action of ~ is independent of the 
intensity of the incoming beam. It corresponds to the linearity of opera- 
tions, usually assumed in the operational quantum mechanics (Davies and 
Lewis, 1970; Mielnik, 1969). 

Our (F3) is frequently assumed (see, e.g., Mielnik, 1969; Pool, 1968) 
and is usually interpreted as the principle of minimal disturbance consid- 
ered by Liiders 0951) (see also Herbut, 1969). It is evident that (F3) does 
not exhaust the whole content of this principle, e.g., our properties (F4) 
and (F6) describes also some aspects of the minimal disturbance principle, 
as will be discussed below. 

It is important to note that (F4) [together with (F1), (F2), and (F3)] 
implies the idempotency of the filters: ~2=r  for any q~ELf. It means that 

3For convenience we have adopted here the traditional terminology of the operational 
quantum mechanics. However, we emphasize that this terminology does not imply a 
commitment to some specific interpretation of probability in quantum theory. 



510 Bugajski and 

the projected state ffa is an eigenstate of r Hence filters are measurements 
of the first kind, which is in full agreement with von Neumann (1955). 

Our property (F5) expresses the common belief that any pure state 
can be produced by a selection process. A similar assumption is common 
in many discussions concerning the foundations of quantum mechanics; 
see, e.g., Gunson (1967), Pool (1968), Jaueh and Piron (1969), and Ochs 
(1972). Observe that the idempotency of filters leads to the following form 
of ~ : ~ f l =  e(qJ~fl)a for any a, fl EP. 

The meaning we have attached to the number e(q~a) suggests that 
e(ep#a) should be interpreted as a transition ratio from the pure state a to 
the pure state ft. Hence the set P of pure states obtains an additional 
structure similar to the one of Mielnik's transition probability space 
(Belinfante, 1976; see also Bugajska and Bugajski, 1973a). The "transition 
probability"p(a, fl) = e(epl~a ) can be considered as a numerical characteris- 
tics of a "distance" between, or a "similarity" of pure states a and r :  the 
greater p(a,fl)  the "closer" a and ft. 

Coming back to the principle of minimal disturbance it is obvious 
now that it contains a requirement like: ~ ~ Lf maps a onto the closest to a 
eigenstate of ~, i.e., that p(a,a'),  where a ' =  e(~/~a)-lq~a, equals the supre- 
mum of the set { p(a, fl)[ fl ~ P, ~fl = fl }. On the other hand it is reasonable 
to assume that this supremurn equals to e(epa) (although the properties of 
the filters we have assumed are too general to make possible a proof of 
this). This can serve as a justification of our (F6). 

It seems that above properties constitute a minimal requirement to 
select filters among all operations on states. Other natural properties which 
are usually imposed on  Lf, as, e.g., the existence of a mapping ~-->@• 
("orthocomplementation", or "negation") with some natural properties 
(Davies and Lewis, 1970; Pool, 1968) are justified a posteriori after 
introducing a more or less explicit form of the projection postulate. 

Let us observe now that any filter q~ ELy defines a function P--->[0, 1], et 
v->e(r as do the elements of L. These functions ("decision effects" of 
Ludwig) can be identified on physical grounds with elements of L. It is 
plausible to assume that any e(e/>a) is represented in L. Conversely, observe 
that we could associate to any aE~L a mapping ~a of P into a l = { a E  
P l a ( a ) = l }  by means of the Sasaki projection (compare Cassinelli and 
Beltrametti, 1975). The corresponding filter f~a is defined by s  
a(a)s This all can be done if L is equipped with much stronger 
properties that in the case of the Mackey description. These stronger 
additional properties are sometimes identified as an abstract version of the 
projection postulate (Bugajska and Bugajski, 1973b). It seems, however, 
that the essential point of the von Neumann-Lfiders  idea about the change 
of states under ideal measurements of the first kind can be expressed in the 
following way: 
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(PP) There is a natural one-to-one correspondence ~2 between the 
elements of L and the elements of Lf with the property: 

a(a) = e(~2(a)a) for every a E L  and a EP .  

This way of understanding the projection postulate is rather new. 
Similar ideas can be found in Gunson (1967), Pool (1968), Jauch and Piron 
(1969), Ochs (1972), and Beltrametti and Cassinelli (1977). 

The correspondence between questions and filters, assumed in (PP), 
has a strong influence on the structures of both L and Ly. For  our purpose 
the most interesting are new features of the Mackey logic L induced by 
(PP). 

Thus (F5) transformed into (L, S) assures the existence of atoms in L. 
Indeed, if a E L  and a EP ,  then a < f~-~(,~,) implies that any eigenstate of 
f~(a) is also an eigenstate of g,,, which means that f~(a)= q~, by (F5). Hence 
~-~(~,)  is an atom, moreover (F5) defines a natural one-to-one correspon- 
dence between atoms of L and pure states, so L appears to be atomic. 

The principle of minimal disturbance in the form of (F6) induces on L 
the Varadarajan (1968) property. Let a be an atom of L and b an element 
of L such that a is not orthogonal to b. By (PP) and (F5) there is a pure 
state, say a, corresponding to a, and there are filtering operations ~2(b) and 
f~(b ' )  corresponding to b and b j-, respectively. The action of f~(b) and 
~2(b -c) on a produces two pure states /31=(e(~2(b)a))-lf~(b)a and /32= 
(e(f~(b • l~2(b • Obviously/31(b) =/32(b • = 1, and the correspond- 
ing atoms of L, which will be denoted b I and b 2, are contained in b and b • 
respectively: b~ <b ,b  2 <b • The property (F6) says now that the atom a is 
less than, or equal to, b~Vb2. This is the Varadarajan version of the 
covering law (see Bugajska and Bugajski, 1973b). 

Now the only property of L which we need to apply the Piron 
representation theorem is the complete lattice property. Note that we are 
very close to it, as for separable L it can be demonstrated (see Bugajska 
and Bugajski, 1973c) that our L is a complete lattice. It is not clear if the 
assumption of separability for L has a deeper physical justification. It 
seems that this property, which is so fundamental for the von Neumann 
version of quantum mechanics, deserves closer attention, and its eventual 
physical roots are to be found. 

If we do not like to assume the separability of L, we can construct a 
natural embedding of L into a complete atomic orthomodular lattice [, 
(Bugajska and Bugajski, 1973c), which preserves all essential structural 
features of L and does not introduce new atoms. If we extend the 
projection postulate on this new L, we obtain exactly a lattice satisfying all 
requirements of the Piron theorem, because the Varadarajan property is 
equivalent to the covering law if only L is a lattice. 
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Thus we conclude that the projection postulate is almost all we need 
to obtain the Hilbert-space model of quantum theory. Let us observe that 
(PP) does not exclude the classical case (although it becomes trivial there), 
which corresponds to the Hilbert-space description with extremely large set 
of superselection rules. To exclude this extreme case we must assume that 
L is not Boolean, or better to postulate some of the previously discussed 
principles such as, for example, the complementarity principle. 

9. CONCLUDING REMARKS 

In this paper we have shown that the Dirac-Heisenberg-Bohr quan- 
tum theory (i.e., the theory resulting from the Mackey description after 
supplementing it with the superposition principle, the uncertainty principle, 
and the complementarity principle) and the von Neumann quantum theory 
(i.e., the standard Hilbert-space quantum theory) are not equivalent, the 
former being more general. In order to reach the von Neumann quantum 
theory from the Mackey description we introduced a version (PP) of the 
projection postulate, and demonstrated that the projection postulate is, 
apart from a trivial case, essentially enough to do the job. This result, 
however, puts the three fundamental principles of the theory in a very odd 
light: they have merely the modest duty of excluding the trivial case of the 
Hilbert-space description with an extremely large set of superselection 
rules. 

Though admittedly not quite satisfactory, with the above results we 
are allured into thinking that in the early years two different quantum 
theories were developed, namely: the Dirac-Heisenberg-Bohr quantum 
theory, which is based on the superposition principle, the uncertainty 
principle, and the complementarity principle and the von Neumann quan- 
tum theory, which is based on the projection postulate. The former was 
developed by the great fathers of the theory, whereas the latter was 
developed by von Neumann (1955) in his classic treatise. Though, of 
course, the von Neumann quantum theory is the one that physicists use in 
their practical work (calculations), it seems that the Dirac-Heisenberg- 
Bohr quantum theory is the theory that physicists, mostly in the early years 
of quantum theory, have in mind in discussing philosophical problems (like 
interpretation) of the theory (see, e.g., Jammer, 1966, 1974). 

Finally, we recall that our analysis of the derivability of the Hilbertian 
quantum theory from the Mackey description supplemented with (PP) 
revealed the importance of the question of the separability of the Mackey 
logic L. Thus, probably, "the separability principle" should be added to the 
collection of the fundamental principles of the theory. However, the 
physical roots of this principle still wait to be found. 
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